Results: Quadratic loads

$\newcommand{\zo}{{^{(0)}}} %zeroth order $ $\newcommand{\fo}{{^{(1)}}} %first order $ $\newcommand{\so}{{^{(2)}}} %second order $ $\newcommand{\fV}{\mathcal{V}} %fluid volume $ $\newcommand{\dV}{\partial\fV} %boundary surface of the fluid volume $ $\newcommand{\VInt}{\fV_{\textrm{Int}}} %displaced volume $ $\newcommand{\dVInt}{\partial \VInt} %fluid volume boundary $ $\newcommand{\SB}{S_B} %body surface $ $\newcommand{\SF}{S_F} %exterior free surface $ $\newcommand{\SI}{S_I} %interior free surface $ $\newcommand{\CWL}{C_{WL}} %body waterline $ $\newcommand{\SCsub}{S_{C,\textrm{sub}}} %submerged control surface $ $\newcommand{\SCfre}{S_{C,\textrm{fs}}} %free surface control surface $ $\newcommand{\CCL}{C_{CL}} %control line $ $\newcommand{\half}{\textstyle\frac{1}{2}} $

These quantities are reported on the mean drift loads (PI), mean drift loads (CS), mean drift loads (MC), quadratic loads (PI) and quadratic loads (CS) sheets of the results tables.

The quadratic load is one of the contributions to the second-order load on a body. It is the contribution that arises from products of two first-order quantities, and therefore can be evaluated from the results of a first-order analysis. We use the terminology time-varying quadratic loads to refer to the complete set of quadratic loads, including both zero and non-zero frequencies, whereas mean drift loads are the special case of zero-frequency quadratic loads.

OrcaWave can evaluate quadratic loads using three different calculation methods. Full details on each method are given below. The following table gives a summary:

Method availability

Result types

Result details

Pressure integration Not available if solve type is potential formulation only Mean drift loads
Time-varying quadratic loads
Reported in body coordinates $\Bxyz$
Six degrees of freedom per body
Control surface integration Not available if body is sectional Mean drift loads
Time-varying quadratic loads
Reported in body coordinates $\Bxyz$
Six degrees of freedom per body
Momentum conservation Not available if model has a damping lid Mean drift loads only Reported in global coordinates $\GXYZ$
Three degrees of freedom for the ensemble of all bodies

Quadratic loads are often slow to converge, requiring a relatively fine mesh in order to obtain accurate results. Given that, the existence of three different calculation methods can be helpful. Their results differ only because of discretisation error, i.e. the error that can be reduced by using a finer mesh.

Tips: Include multiple calculation methods in the same analysis to compare the results from the different methods. The differences can be a useful metric for the level of discretisation error in your results.
The best way to understand the accuracy of your results is to perform a convergence study: take a subset of cases and compare results using a sequence of meshes of increasing resolution. Ideally, include all the calculation methods in your convergence study.

Mean drift loads

Mean drift loads, also known as Newman QTFs, are the special case of quadratic loads corresponding to zero difference frequency.

Note: The total second-order load has no contribution from the potential load in the special case of zero difference frequency.

OrcaWave gives results for a complex quantity $\vec{F}_q$, following the complex notation used in the second-order theory. If the incoming wave at a given frequency includes contributions with complex amplitude $A_i$ for multiple wave headings $\beta_i$, the physical load is given by \begin{equation} \sum_{i,j} \Re\left\{A_i A_j^* \vec{F}_q(\beta_i, \beta_j)\right\} = \sum_i |A_i|^2 \vec{F}_q(\beta_i, \beta_i) + 2\sum_{j>i} \Re\left\{ A_i A_j^* \vec{F}_q(\beta_i, \beta_j) \right\} \end{equation}

Time-varying quadratic loads

Time-varying quadratic loads to refer to the complete set of quadratic loads, including both zero and non-zero frequencies. OrcaWave only reports complete quadratic load results if the solve type is full QTF. Each quadratic load can be added to the corresponding potential load to obtain a full QTF.

OrcaWave gives results for a complex quantity $\vec{F}_q^{\pm}$, following the complex notation used in the second-order theory. Assuming a wave spectrum with complex amplitudes $A_i$, the physical load is given by \begin{equation} \begin{aligned} \sum_{ij} \Re\left\{A_i A_j \vec{F}^+_{q,ij}\textrm{e}^{\textrm{i}(\omega_i+\omega_j) t}\right\} & \;\;\;\textrm{ for a sum frequency} \\ \sum_{ij} \Re\left\{A_i A_j^* \vec{F}^-_{q,ij}\textrm{e}^{\textrm{i}(\omega_i-\omega_j) t} \right\} & \;\;\;\textrm{ for a difference frequency} \end{aligned} \end{equation}

Note: In the special case of zero difference frequency, the result is identical to the mean drift load.

Pressure integration method

The pressure integration method, also known as the near-field method, obtains the quadratic load by direct integration of the hydrodynamic pressure. It is only available if the solve type includes the source formulation, because fluid velocity $\nabla\phi$ is required on the body surface $\SB$.

Results include mean drift loads and, if the solve type is full QTF, time-varying quadratic loads. Results are reported in body coordinates $\Bxyz$.

For this calculation method, the quadratic load is most conveniently expressed in terms of real quantities. In the formulae below, this is emphasised by using $\Phi$ for the potential, rather than the complex potential, $\phi$. In the translation degrees of freedom, the force on a displacement body is \begin{align} \vec{f}_q = &\; \frac{\rho g}{2}\oint_{\CWL} \left(\eta - d_3 \right)^2 \frac{\vec{n}}{\sqrt{1-n_z^2}} \ud l - \rho \int_{\SB}\left\{ \frac{1}{2}\left(\nabla\Phi\right)^2 + \vec{d} \cdot \nabla\PDt{\Phi} \right\}\vec{n} \ud S \nonumber \\ &\; + \vec{\alpha}\times\vec{f}\fo - \rho g |\SI| (\vec{\alpha} \cdot \vec{x}_f) \alpha_3 \vec{e}_z \label{eqPressureIntegrationForce} \\ \textrm{where}\;\;\; \eta(x,y,t) = &\; -\frac{1}{g}\PDt{\Phi}(x,y,0) \\ \vec{d}(\vec{x},t) = &\; \vec{\xi}(t) + \vec{\alpha}(t)\times\vec{x} \\ \vec{f}\fo(t) = &\; -\rho\int_{\SB} \PDt{\Phi} \vec{n}\ud S - \rho g |\SI| d_3(\vec{x}_f, t) \vec{e}_z \end{align} Here

Each quantity is first order. The corresponding superscripts, e.g. $\Phi\fo$, are omitted for visual clarity.

$\vec{\xi}(t)$ is the translational displacement of the body, obtained from the surge, sway and heave displacement RAOs

$\vec{\alpha}(t)$ is the rotational displacement of the body, obtained from the roll, pitch and yaw displacement RAOs

$\vec{x}_f$ is the centre of floatation

$|\SI|$ is the water plane area

In the line integral, $\vec{n}$ is the three dimensional normal to the body surface at each point along the waterline, $\CWL$.

In the rotation degrees of freedom, the moment on a displacement body is \begin{align} \vec{m}_q = &\; \frac{\rho g}{2}\oint_{\CWL} \left(\eta -d_3 \right)^2 \frac{\vec{x}\times\vec{n}}{\sqrt{1-n_z^2}} \ud l - \rho \int_{\SB}\left\{ \frac{1}{2} \left(\nabla\Phi\right)^2 + \vec{d}\cdot\nabla\PDt{\Phi} \right\}(\vec{x}\times\vec{n}) \ud S \nonumber \\ &\; + \vec{\xi}\times\vec{f}\fo + \vec{\alpha}\times\vec{m}\fo + \rho g |\VInt| \Big\{(\vec{\alpha}\cdot\vec{\xi})\vec{e}_z - \alpha_3 \vec{d}(\vec{x}_b, t)\Big\} \nonumber \\ &\; + \rho g\left\{ \half |\VInt|\left(2\alpha_1\alpha_2 x_b - \alpha_1^2 y_b - \alpha_3^2 y_b\right) - \alpha_1\alpha_3 L_{xy} -\alpha_2\alpha_3 L_{yy} \right\}\vec{e}_x \nonumber \\ &\; + \rho g\left\{ \half |\VInt| \left({\alpha_2^2 + \alpha_3^2}\right)x_b + \alpha_1\alpha_3 L_{xx} + \alpha_2\alpha_3 L_{xy} \right\}\vec{e}_y \label{eqPressureIntegrationMoment} \\ \textrm{where}\;\;\; \vec{m}\fo(t) = &\; -\rho\int_{\SB} \vec{x}\times\vec{n}\, \PDt{\Phi} \ud S + \rho g |\VInt| \vec{d}(\vec{x}_b, t) \times \vec{e}_z \nonumber \\ &\; - \rho g \left(|\SI|y_f\xi_3 + L_{yy}\alpha_1 - L_{xy}\alpha_2\right) \vec{e}_x + \rho g \left(|\SI|x_f\xi_3 + L_{xy}\alpha_1 - L_{xx}\alpha_2\right) \vec{e}_y \end{align} Here

$\vec{x}_b$ is the centre of buoyancy

$|\VInt|$ is the volume of the body

$L_{xx}$, $L_{xy}$ and $L_{yy}$ are the water plane moments of the body

Note: Equations (\ref{eqPressureIntegrationForce}) and (\ref{eqPressureIntegrationMoment}) are modified in the case of a sectional body.

Control surface integration method

The control surface integration method, also known as the middle-field method, obtains the quadratic load from integrals over both the body surface and a control surface. Equations (\ref{eqPressureIntegrationForce}) and (\ref{eqPressureIntegrationMoment}) are transformed (Chen 2004) into this alternative form by repeated applications of the divergence theorem. It is available in all models but is not applicable to sectional bodies.

Control surface integration often achieves more accurate (converged) results than the pressure integration method for a given mesh. Alternatively, a coarser mesh may be sufficient to achieve a given accuracy in the results.

Results include mean drift loads and, if the solve type is full QTF, time-varying quadratic loads. Results are reported in body coordinates $\Bxyz$.

Tip: Control surface integration requires negligible memory. If your thread count is limited by the memory available on your machine, you might be able to reduce total run time by postponing control surface calculations to a restart analysis. This makes it possible to combine a limited thread count (in the parent model) for the solution of the first-order integral equations with a higher thread count (in the child model) for control surface calculations.

As for the pressure integration method, the quadratic load is most conveniently expressed in terms of real quantities. In the translation degrees of freedom, the force is \begin{align} \vec{f}_q = &\; \rho g \vec{e}_z \oint_{\CWL} \left\{ -\eta (\vec{d}\cdot\vec{n}^h) + \frac{\left(\eta - d_3\right)^2 n_z}{2\sqrt{1-n_z^2}} \right\} \ud l - \frac{\rho g}{2}\oint_{\CCL}\vec{n}^h \eta^2 \ud l \nonumber \\ &\; + \rho \int_{\SCsub}\left\{ \nabla\Phi\PD{\Phi}{n} -\frac{\vec{n}}{2} \left(\nabla\Phi\right)^2 \right\} \ud S \nonumber \\ &\; + \rho \int_{\SCfre}\left\{ \nabla\Phi\PD{\Phi}{n} -\frac{\vec{n}}{2} \left(\nabla\Phi\right)^2 + g \eta \nabla^h\eta \right\} \ud S \nonumber \\ &\; - \rho\int_{\SB} \left\{ \nabla\Phi \left(\PDt{\vec{d}}\cdot\vec{n}\right) + \left(\vec{d}\cdot\vec{n}\right) \nabla\PDt{\Phi} \right\} \ud S \nonumber \\ &\; - \rho g |\SI| (\vec{\alpha} \cdot \vec{x}_f) \alpha_3 \vec{e}_z \label{eqControlSurfaceForce} \end{align} Here

In the line integrals, $\vec{n}^h$ is a two dimensional normal to the line (i.e. $\CWL$ or $\CCL$) pointing out of $\SCfre$.

All other quantities have the same definitions as for the pressure integration method.

In the rotation degrees of freedom, the moment is \begin{align} \vec{m}_q = &\; \rho g \oint_{\CWL} \left\{ -\eta \left(\vec{d}\cdot\vec{n}^h\right) + \frac{\left(\eta - d_3\right)^2 n_z}{2\sqrt{1-n_z^2}} \right\} \left(\vec{x}\times\vec{e}_z\right) \ud l - \frac{\rho g}{2}\oint_{\CCL} \left(\vec{x}\times\vec{n}^h\right) \eta^2 \ud l \nonumber \\ &\; + \rho \int_{\SCsub} \left\{ \vec{x}\times\nabla\Phi \PD{\Phi}{n} - \frac{\vec{x}\times\vec{n}}{2} \left(\nabla\Phi\right)^2 \right\} \ud S \nonumber \\ &\; + \rho \int_{\SCfre} \left\{ \vec{x}\times\nabla\Phi \PD{\Phi}{n} - \frac{\vec{x}\times\vec{n}}{2} \left(\nabla\Phi\right)^2 + g \eta \vec{x}\times\nabla^h \eta \right\} \ud S \nonumber \\ &\; - \rho\int_{\SB}\left\{ (\vec{x}\times\nabla\Phi) \left(\PDt{\vec{d}}\cdot\vec{n}\right) + (\vec{d}\cdot\vec{n}) \left(\vec{x} \times \nabla\PDt{\Phi}\right) \right\}\ud S \nonumber \\ &\; - \rho g |\SI| \left( d_3(\vec{x}_f, t) \vec{\xi}\times\vec{e}_z + \xi_3\alpha_3\vec{x}_f \right) \nonumber \\ &\; + \rho g\left\{ \half |\VInt|\left(2\alpha_1\alpha_2x_b - \alpha_1^2y_b - \alpha_3^2y_b\right) + \alpha_2\alpha_3 (L_{xx} - L_{yy}) -2\alpha_1\alpha_3 L_{xy} \right\}\vec{e}_x \nonumber \\ &\; + \rho g\left\{ \half |\VInt|\left(\alpha_2^2 + \alpha_3^2\right) x_b + \alpha_1\alpha_3 (L_{xx} - L_{yy}) + 2\alpha_2\alpha_3 L_{xy} \right\}\vec{e}_y \label{eqControlSurfaceMoment} \end{align}

Notes: Equations (\ref{eqControlSurfaceForce}) and (\ref{eqControlSurfaceMoment}) correspond to equations (12) and (13) in (Lee 2005) but in the reference the normal vectors on $\SCsub$ and $\SCfre$ are oriented in the opposite sense. Also note that the reference assumes a wall-sided body, i.e. $n_z=0$ on $\CWL$.
For the special case of mean drift loads, some terms in equations (\ref{eqControlSurfaceForce}) and (\ref{eqControlSurfaceMoment}) can be simplified. Most noticeably the integrals over $\SB$ disappear entirely.
Equations (\ref{eqControlSurfaceForce}) and (\ref{eqControlSurfaceMoment}) are modified in the presence of dipole panels.

Momentum conservation method

The momentum conservation method, also known as the far-field method, obtains the quadratic load from a far-field asymptotic analysis of the velocity potential. It is available in all models except those with a damping lid.

Momentum conservation is closely related to control surface integration and, like that method, it often achieves more accurate (converged) results than the pressure integration method for a given mesh.

In contrast to the other methods, results are reported in global coordinates $\GXYZ$. In addition, there are some significant limitations:

For this calculation method, the quadratic load is most conveniently expressed in complex notation. First we define $H_{\beta}(\theta)$, the Kochin function for an incident wave of heading $\beta$ \begin{equation} \begin{aligned} H_{\beta}(\theta) = &\; \int_{S_B} \left\{ \psi(\vec{\xi}, \theta) \PD{\phi}{n_\xi}(\vec{\xi}) - \phi(\vec{\xi})\PD{\psi}{n_\xi}(\vec{\xi}, \theta) \right\} \ud S_\xi \\ \psi(\vec{\xi}, \theta) = &\; f(k \zeta) \textrm{e}^{-\textrm{i}k (\xi\cos\theta + \eta\sin\theta)} \end{aligned} \label{eqKochinFunction} \end{equation} Here

$\phi$ is the first-order complex velocity potential associated with an incident wave of heading $\beta$ and unit amplitude

$\vec{\xi}=(\xi,\eta,\zeta)$, $k$ is the wavenumber, $f(k \zeta)$ is the function of depth in the incident wave

The surge component of the mean drift load is given in terms of the Kochin functions \begin{align} \left[\vec{F}_q(\beta_i, \beta_j)\right]_{\textrm{surge}} = &\; \frac{\rho k^3}{8\pi \nu} \left(\frac{\nu}{\nu + h(k^2 - \nu^2)}\right) \int_0^{2\pi} \cos\theta\, H_{\beta_i}(\theta) H^*_{\beta_j}(\theta) \ud \theta \nonumber \\ &\; + \frac{\rho k \omega}{4 \nu} \left\{ \cos\beta_j\, H_{\beta_i}(\pi + \beta_j) + \cos\beta_i\, H^*_{\beta_j}(\pi + \beta_i) \right\} \label{eqMomentumConservationSurge} \end{align} The formula for the sway component is the same as (\ref{eqMomentumConservationSurge}), but with $\cos\theta$, $\cos\beta_i$ and $\cos\beta_j$ replaced by $\sin\theta$, $\sin\beta_i$ and $\sin\beta_j$ respectively.

The yaw component of the mean drift load is given by \begin{align} \left[\vec{F}_q(\beta_i, \beta_j)\right]_{\textrm{yaw}} = &\; \frac{-\textrm{i} \rho k^2}{8\pi \nu} \left(\frac{\nu}{\nu + h(k^2 - \nu^2)}\right) \int_0^{2\pi} H^{\prime}_{\beta_i}(\theta) H^*_{\beta_j}(\theta) \ud \theta \nonumber \\ &\; + \frac{\textrm{i} \rho \omega}{4 \nu} \left\{ H^{\prime}_{\beta_i}(\pi + \beta_j) - H^{* \prime}_{\beta_j}(\pi + \beta_i) \right\} \label{eqMomentumConservationYaw} \end{align} In (\ref{eqMomentumConservationSurge}) and (\ref{eqMomentumConservationYaw}) the integrations with respect to $\theta$ are performed by numerical quadrature using the user-specified number of nodes.

Note: Equation (\ref{eqKochinFunction}) is modified in the presence of dipole panels.

Sectional bodies

The control surface method is not available for sectional bodies. The pressure integration method is available, using modified equations. Instead of (\ref{eqPressureIntegrationForce}), the force is \begin{align} \vec{f}_q = &\; \frac{\rho g}{2}\oint_{\CWL} \left(\eta - d_3 \right)^2 \frac{\vec{n}}{\sqrt{1-n_z^2}} \ud l - \rho \int_{\SB}\left\{ \frac{1}{2}\left(\nabla\Phi\right)^2 + \vec{d} \cdot \nabla\PDt{\Phi} \right\}\vec{n} \ud S \nonumber \\ &\; + \vec{\alpha} \times \left(\vec{f}\fo - \vec{\alpha} \times \vec{f}\zo\right) + H \vec{f}\zo - q^b \vec{h} \\ \textrm{where}\;\;\; \vec{f}\zo(t) = &\; -q^b_{i3} \\ \vec{f}\fo(t) = &\; -\rho\int_{\SB} \PDt{\Phi} \vec{n}\ud S - K_{i, 3} \xi_3 - K_{i, j+3}\alpha_{j} \\ H = &\; \frac{1}{2}\left( \begin{array}{ccc} -(\alpha_{2}^2 + \alpha_{3}^2) & 0 & 0 \\ 2\alpha_{1}\alpha_{2} & -(\alpha_{1}^2 + \alpha_{3}^2) & 0 \\ 2\alpha_{1}\alpha_{3} & 2\alpha_{2}\alpha_{3} & -(\alpha_{1}^2 + \alpha_{2}^2) \end{array} \right) \\ \vec{h} = &\; H_{3i} \end{align} Instead of (\ref{eqPressureIntegrationMoment}), the moment is \begin{align} \vec{m}_q = &\; \frac{\rho g}{2}\oint_{\CWL} \left(\eta -d_3 \right)^2 \frac{\vec{x}\times\vec{n}}{\sqrt{1-n_z^2}} \ud l - \rho \int_{\SB}\left\{ \frac{1}{2} \left(\nabla\Phi\right)^2 + \vec{d}\cdot\nabla\PDt{\Phi} \right\}(\vec{x}\times\vec{n}) \ud S \nonumber \\ &\; + \vec{\xi}\times\vec{f}\fo + \vec{\alpha} \times \left( \vec{m}\fo - \vec{\alpha} \times \vec{m}\zo - \vec{\xi} \times \vec{f}\zo \right) + H \vec{m}\zo - q^c \vec{h} \\ \textrm{where}\;\;\; \vec{m}\zo(t) = &\; -q^c_{i3} \\ \vec{m}\fo(t) = &\; -\rho\int_{\SB} \vec{x}\times\vec{n}\, \PDt{\Phi} \ud S -K_{i+3, 3}\xi_3 - K_{i+3, j+3}\alpha_j + M g (\alpha_3 \vec{x}_m - z_m \vec{\alpha}) + \vec{\xi} \times \vec{f}\zo \end{align} Here

$K_{ij}$ is the hydrostatic stiffness matrix

$q^b_{ij}$ and $q^c_{ij}$ are matrices which form part of the definition of $K_{ij}$